Web Interstitial Ad Example

發展人工智能最大挑戰是什麼?

04-04-2024
aa20240404c

人工智能(AI)熱潮下概念股備受追棒,AI科技看來潛能無限,但經驗及實驗均顯示AI科技要達到改變生活的普及程度,將面對艱巨挑戰,當中能源是最大阻力。AI系統消耗大量能源,而能源開發是個難題。

讓我們從實體基礎設施和潛在應用方面,來探究人工智能的碳足跡。人工智能的實體基礎設施包括數據中心、處理器和其他專用電腦硬件。研究顯示,人工智能運算的生命週期分為四個階段:生產、運輸、營運和報廢。其中,營運階段所產生的碳排放量高達70%至80%。

大型語言模型(LLM)是一種AI程式,屬聊天機械人ChatGPT及類似AI系統背後的科技。LLM是理解和產生人類語言文字的機械學習模型,透過「閱讀」大量文章和影音進行演算,學習單詞和句子之間的關係,通過資料辨識模式,產生自然且可讀的輸出。但這需要海量計算,動用大量能源。

數據中心是人工智能的能源消耗重點。目前全球約有1%至1.5%的總用電量來自數據中心。生成式人工智能(如ChatGPT-3)的訓練需要大量電力,相當於120個美國家庭一年的用電量。

製造AI晶片需要能源,運算能力耗用能源,AI系統冷卻系統消耗水源和能源,數據中心的水足跡受發電時消耗的水資源和冷卻消耗的影響。訓練一項生成式人工智能模型可能消耗多達28.4萬公升水,相當於一個普通人27年的用水量。至於報廢階段主要影響是其產生的電子廢棄物,含有重金屬和有毒的化學物質。